S,S'-Diorgano Derivatives of the 1,5-Ph₄P₂N₄S₂ Ring: Lithium Halide Adducts, **Conformational Isomerism, and N-Methylation**

Tristram Chivers,* Xiaoliang Gao, Robert W. Hilts, Masood Parvez, and Rainer Vollmerhaus

Department of Chemistry, The University of Calgary, Calgary, Alberta T2N 1N4, Canada

Received October 6, 1994[®]

The reaction of the lithium reagents $[Li(Ph_4P_2N_4S_2R)THF]_2$ (R = Me, 'Bu, Ph) with organic iodides R'I (R' = Me, allyl) at 23 °C in THF produces lithium iodide adducts of the type [Ph₄P₂N₄(SR)(SR')LiI(THF)], which were characterized by ¹H, ⁷Li, ¹³C and ³¹P NMR spectroscopy. The dissolution of these adducts in CH₂Cl₂ or toluene results in the precipitation of LiI and the concomitant formation of eight-membered rings $Ph_4P_2N_4(SR)(SR')$ in the form of boat (6B, R = R' = Me) or twisted boat (10B, R = Bu, R' = allyl) conformers with sulfur atoms in the prow and stern positions. The boat conformers ($\delta({}^{31}P) = 14 - 17$ ppm) are converted quantitatively to the corresponding chair conformers (δ (³¹P) = 27–29 ppm) upon mild heating (35–40 °C) in CH₂Cl₂ or CH₃CN for 12 h. The reaction of $Na_2[Ph_4P_2N_4S_2]$ with 2 molar equiv of allyl iodide produces $Ph_4P_2N_4(Sallyl)_2$ (11B) in which the $P_2N_4S_2$ ring adopts a boat conformation with nitrogen atoms as the prow and stern. The treatment of $Ph_4P_2N_4(SPh)_2$ with methyl triflate yields the N-methylated adduct $[Ph_4P_2N_3(NMe)(SPh)_2][SO_3CF_3]$ (12). N-methylation results in elongation of the P-N and S-N bonds involving the methylated nitrogen atom by 0.074 and 0.078 Å, respectively. Crystal data: **6B**, monoclinic, space group C2/c, a = 34.886(12) Å, b = 11.870-(3) Å, c = 12.827(8) Å, $\beta = 105.97(4)^\circ$, V = 5106(3) Å³, Z = 8, R = 0.042, $R_w = 0.040$; **10B**, triclinic, space group $P\overline{1}$, a = 10.253(3) Å, b = 15.875(4) Å, c = 9.582(1) Å, $\alpha = 93.97(2)^{\circ}$, $\beta = 100.75(2)^{\circ}$, $\gamma = 84.57(2)^{\circ}$, V = 1523.3(6) Å³, Z = 2, R = 0.051, $R_w = 0.028$; **11B**, monoclinic, space group C2/c, a = 20.519(2) Å, b = 0.028; **11B**, monoclinic, space group C2/c, a = 20.519(2) Å, b = 0.028; **11B**, monoclinic, space group C2/c, a = 0.02816.190(3) Å, c = 17.581(3) Å, $\beta = 96.10(1)^{\circ}$, V = 5807(1) Å³, Z = 8, R = 0.051, $R_w = 0.054$; 12, monoclinic, space group Cc, a = 9.949(1) Å, b = 20.377(4) Å, c = 19.376(4) Å, $\beta = 100.16(1)^{\circ}$, V = 3866(1) Å³, Z = 4, $R = 0.058, R_w = 0.032.$

Introduction

Ring systems of the type $R_4P_2N_4S_2R'_2$ are hybrids of the wellknown cyclophosphazenes $(R_2PN)_4^1$ and the tetrameric cyclothiazyl systems (NSR')₄, which are unknown for R' = alkylor aryl.² The preparation of the first example of this inorganic heterocycle, Ph₄P₂N₄S₂Me₂, which involved the use of the explosive reagent Me₂S(NBr)₂, was reported by Appel et al. in 1968.³ More than 20 years later, we described the synthesis of the corresponding selenium ring system, Ph₄P₂N₄Se₂Me₂, and showed it to consist of an eight-membered chair with the two selenium atoms displaced on either side of the P₂N₄ plane by ca. 1.07 Å and methyl substituents in axial positions.⁴ The S,S'diphenyl derivative Ph₄P₂N₄S₂Ph₂, which was made by the reaction of Ph₂PN₂(SiMe₃)₃ with 3 molar equiv of PhSCl, adopts a similar structure.5

The recent discoveries of alkali metal derivatives of the anions $Ph_4P_2N_4S_2Me^-$ and $Ph_4P_2N_4S_2^{2-}$, both of which react with iodomethane to yield $Ph_4P_2N_4S_2Me_2$,^{6,7} has paved the way for the synthesis of a wide range of S,S'-diorgano derivatives with either the same or different groups attached to the two sulfur

- (1) Allen, C. W. In The Chemistry of Inorganic Homo- and Heterocycles; Steudel, R., Ed.; Academic Press: London, 1987: Vol. 2, Chapter 20.
- (2) Heal, H. G. In The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus; Academic Press: London, 1980; p 138.
- (3) Appel, R.; Hänssgen, D.; Müller, W. Chem. Ber. 1968, 101, 2855. (4) Chivers, T.; Doxsee, D. D.; Fait, J. F. J. Chem. Soc., Chem. Commun.
- 1989, 1703.
- (5) Chivers, T.; Kumaravel, S. S.; Meetsma, A.; van de Grampel, J. C.; van der Lee, A. *Inorg. Chem.* 1990, 29, 4592.
 (6) Chivers, T.; Edwards, M.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R.
- Inorg. Chem. 1994, 33, 1440.
- (7) (a) Chivers, T.; Cowie, M.; Edwards, M.; Hilts, R. W. Inorg. Chem. 1992, 31, 3349. (b) Chivers, T.; Gao, X. Unpublished results.

atoms. In view of the potential applications of these inorganic ring systems as precursors for hybrid PN/SN polymers, which have been the subject of recent attention,⁸ or as multidentate ligands,9 we have prepared a variety of these eight-membered rings and structurally characterized three of them. Another incentive for a more detailed investigation of the reactions of $[Li(Ph_4P_2N_4S_2R)THF]_2$ and $Li_2[Ph_4P_2N_4S_2]$ with MeI (or other organic halides) was the observation that the ³¹P NMR chemical shift of the initial product of these reactions differed from that of the final product by more than 10 ppm.¹⁰ The N-methylated compound [Ph₄P₂N₃(NMe)(SPh)₂][CF₃SO₃] was also prepared and structurally characterized in order to assess the possibility of using Lewis acids to promote ring-opening polymerization of the $P_2N_4S_2$ ring.

Experimental Section

Reagents and Purification Procedures. All experiments were conducted under dry argon gas in Schlenk vessels using standard airsensitive techniques. All solvents were distilled from the appropriate drying agents under argon and deoxygenated by argon purge (15 min) prior to use. Iodomethane and allyl iodide (Aldrich) were purified by passage through a short column (5 cm) of basic alumina. The compounds 1,5-Ph₄P₂N₄S₂¹¹ and Li[Ph₄P₂N₄S₂R] (R = Me, ^tBu, Ph)⁶ were prepared by the literature methods. $M_2[Ph_4P_2N_4S_2]$ (M = Li, Na) was obtained by treatment of 1,5-Ph₄P₂N₄S₂ with 2 molar equiv of M[Et₃BH] (Aldrich) in THF at -78 °C followed by warming to 23 °C.⁷ The compound 1,5-Ph₄P₂N₄S₂Ph₂ was prepared in 59% yield from

- (10) Edwards, M. Ph.D. Thesis, The University of Calgary, 1992.
- (11) Chivers, T.; Edwards, M.; Parvez, M. Inorg. Chem. 1992, 31, 1861.

© 1995 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, February 1, 1995.

^{(8) (}a) Dodge, J. A.; Manners, I.; Allcock, H. R. J. Am. Chem. Soc. 1990, 112, 1268. (b) Liang, M.; Manners, I. J. Am. Chem. Soc. 1991, 113, 4044. (c) Manners, I. Coord. Chem. Rev. 1994, 137, 109.

⁽⁹⁾ Chivers, T.; Doxsee, D. D.; Hilts, R. W.; Parvez, M. Can. J. Chem. 1993, 71, 1821

Table 1. ⁷Li{¹H} and ³¹P{¹H} NMR Data for $[Ph_4P_2N_4(SR)(SR')LiI(THF)]$ (1-5) and the Boat and Chair Conformers $[Ph_4P_2N_4(SR)(SR')]$ (6-11)

	/1 (/		
$compd^a$	$\delta(^7\mathrm{Li})^{b,c}$	$\delta({}^{31}\mathrm{P})^d$	solvent
1 (R = R' = Me)	0.61	14.7	THF
$2 (\mathbf{R} = \mathbf{Ph}, \mathbf{R'} = \mathbf{Me})$	0.64	16.4	THF
3 (R = Bu, R' = Me)	0.74	16.2	THF
4 (R = Ph, R' = allyl)	0.45	16.7	THF
5 (R = Bu, R' = allyl)	0.66	16.5	THF
$\mathbf{6B} (\mathbf{R} = \mathbf{R'} = \mathbf{Me})$		14.1	THF
$7\mathbf{B} (\mathbf{R} = \mathbf{Ph}, \mathbf{R'} = \mathbf{Me})$		16.3	THF
8B ($\mathbf{R} = {}^{t}\mathbf{B}\mathbf{u}, \mathbf{R'} = \mathbf{M}\mathbf{e}$)		16.1	THF
9B ($\mathbf{R} = \mathbf{Ph}, \mathbf{R'} = \mathbf{allyl}$)		16.7	THF
10B (R = 'Bu, R' = allyl)		16.4	THF
11B (R = R' = allyl)		15.0	THF
$\mathbf{6C} (\mathbf{R} = \mathbf{R}' = \mathbf{M}\mathbf{e})$		27.0	CH_2Cl_2
7C (R = Ph, R' = Me)		27.6	THF
8 C (R = $^{t}Bu, R' = Me$)		26.9	THF
9C (R = Ph, R' = allyl)		27.6	THF
$10C (R = {}^{t}Bu, R' = allyl)$		27.2	CH_2Cl_2

^{*a*} **B** = boat conformer; **C** = chair conformer. ^{*b*} Chemical shifts are quoted in ppm relative to 4.0 M LiClO₄ in D₂O, *cf*. $\delta(^7\text{Li}) = -0.11$ ppm for LiI in THF. ^{*c*}Spectra were recorded in THF with a D₂O insert. All ⁷Li resonances listed above are singlets. ^{*d*} Chemical shifts are quoted in ppm relative to 85% H₃PO₄. The lock signal was provided by a sealed D₂O insert.

Ph₂PN₂(SiMe₃)₃ and 3 molar equiv of PhSCl by the literature method⁵ but with CH₃CN rather than CH₂Cl₂ as solvent. The use of CH₃CN obviates the need to extract the product with pentane to remove Ph₂S₂. Methyl triflate, lithium iodide, methyllithium (1.5 M in diethyl ether), *tert*-butyllithium (1.7 M in pentane), and phenyllithium (1.8 M in cyclohexane/diethyl ether) were obtained from Aldrich and used as received. Combustion analyses were performed by the microanalytical service within the Chemistry Department at the University of Calgary.

Instrumentation. ³¹P{¹H} NMR spectra were recorded on either a Varian XL-200 spectrometer (81.0 MHz) or a Bruker AM-400 spectrometer (161.978 MHz) in THF or dichloromethane with 85% H₃PO₄ as the external reference. A D₂O insert was used as the lock for the phosphorus-31 spectra. The ⁷Li{¹H} NMR spectra were recorded on the AM-400 instrument at 155.508 MHz or on the Varian XL-200 instrument at 77.754 MHz, and the ⁷Li chemical shifts are relative to 4.0 M LiClO₄ in D₂O. Proton NMR spectra were run on either a Bruker AM-200 spectrometer at 200.1 MHz or the Bruker AM-400 instrument at 50.323 MHz. Fast atom bombardment mass spectra were recorded on a Kratos MS80 RFA instrument in a nitrobenzyl alcohol matrix using xenon as the ionizing gas.

Preparation of [Ph₄P₂N₄(SR)(SR)/Lil(THF)] Adducts. In a typical experiment, an equimolar quantity of either iodomethane or allyl iodide was added dropwise by syringe to a rapidly stirred yellow solution of a selected organolithium derivative, Li[Ph₄P₂N₄S₂R] (R = Me, 'Bu, Ph), in 20 mL of THF at 23 °C. The resulting pale yellow solution was stirred for *ca*. 1 h, and then the solvent was removed under vacuum to give a buff solid. The last vestiges of free THF were removed from the product by gentle heating overnight at 40 °C under a dynamic vacuum. All of the LiI(THF) adducts described below were obtained in quantitative yield. The ⁷Li and ³¹P NMR data for the adducts are collected in Table 1. Selected proton and carbon-13 NMR data for the new adducts are given below along with their CHN analyses.

[Ph₄P₂N₄(SMe)₂LiI(THF)] (1). Anal. Calcd for $C_{30}H_{34}ON_4P_2S_2$ -LiI: C, 49.59; H, 4.72; N, 7.71. Found: C, 49.14; H, 4.64; N, 7.72. ¹H NMR (d₈-toluene): 7.05-8.15 (m, C₆H₅, 20H), 3.79 (m, THF, 4H), 2.59 (t, SCH₃, 6H, ⁴J(PH) = 1.5 Hz), 1.49 (m, THF, 4H). ¹³C{¹H} NMR (d₈-toluene): 137.4-127.4 (m, C₆H₅), 68.65 (s, THF), 45.40 (t, SCH₃, ³J(PC) = 15 Hz), 25.47 (s, THF).

[Ph₄P₂N₄(SMe)(SPh)LiI(THF)] (2). Anal. Calcd for $C_{35}H_{36}N_{4}$ -OP₂S₂LiI: C, 53.31; H, 4.60; N, 7.10. Found: C, 53.97; H, 5.18; N, 6.45. ¹H NMR (d₈-toluene): 7.45-8.25 (m, C₆H₅, 25H), 3.98 (m, THF, 4H), 2.85 (t, SCH₃, 3H, ⁴J(PH) = 1.5 Hz), 1.73 (m, THF, 4H). ¹³C-{¹H} NMR (d₈-toluene): 44.27 (t, SCH₃, ³J(PC) = 16 Hz).

[**Ph₄P₂N₄(SMe)(S^tBu)LiI(THF)**] (3). Anal. Calcd for C₃₃H₄₀N₄-OP₂S₂LiI: C, 51.57; H, 5.25; N, 7.29. Found: C, 50.68, H, 5.85; N,

Table 2. Crystallographic Data for Compounds 6B, 10B, 11B and 12

	6B	10B	11 B	12
formula	C ₂₆ H ₂₆ N ₄ - P ₂ S ₂	C ₃₁ H ₃₄ N ₄ - P ₂ S ₂	$C_{30}H_{30}N_{4}-P_{2}S_{2}$	C ₃₈ H ₃₃ N ₄ O ₃ - F ₃ P ₂ S ₃
fw	520.59	588.70	572.66	808.83
space group	C2/c (No. 15)	P1 (No. 2)	C2/c (No. 15)	Cc (No. 9)
a, Å	34.886(2)	10.253(3)	20.519(2)	9.949(1)
b, Å	11.870(3)	15.875(4)	16.190(3)	20.377(4)
c, Å	12.827(8)	9.582(1)	17.581(3)	19.376(4)
α, deg		93.97(2)		
β , deg	105.97(4)	100.75(2)	96.10(1)	100.16(1)
γ , deg		84.57(2)		
$V, Å^3$	5106(3)	1523.3(6)	5807(1)	3866(1)
Z	8	2	8	4
$D_{\rm calc}, {\rm g}~{\rm cm}^{-3}$	1.354	1.283	1.310	1.389
$\mu(\operatorname{Mo} K\alpha), \\ \operatorname{cm}^{-1}$	3.57	3.07	3.20	3.31
λ (Å)	0.710 69	0.710 69	0.710 69	0.710 69
T(°C)	-123	23	-123	23
R^{a}, R_{w}	0.042, 0.040	0.051, 0.028	0.051, 0.054	0.058, 0.032

 $^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; R_{w} = [\sum_{w} \delta^{2} / \sum_{w} F_{o} 2]^{1/2}.$

6.15. ¹H NMR (d_8 -toluene): 6.95–8.30 (m, C₆ H_5 , 20H), 3.78 (m, THF, 4H), 2.70 (t, SCH₃, 3H, ⁴J(PH) = 1.5 Hz), 1.48 (m, THF, 4H), 1.29 (s, SC(CH₃)₃, 9H).

[Ph₄P₂N₄(SPh)(Sallyl)LiI(THF)] (4). Anal. Calcd for C₃₇H₃₈-ON₄P₂S₂LiI: C, 54.55; H, 4.70; N, 6.88; I, 15.58. Found: C, 54.32; H, 4.80; N, 6.65; I, 15.14. ¹H NMR (d₈-toluene): 6.95-8.15 (m, C₆H₅, 25H), 5.90 (ddt, SCH₂CH_A=CH_BH_C, 1H, ³J(trans)H_A-H_B = 17.5 Hz, ³J(cis)H_A-H_C = 10 Hz, ³J(H_A-SCH₂) = 7.5 Hz), 5.08-4.97 (m, SCH₂-CH_A=CH_BH_C, 2H), 3.84 (d, SCH₂CH_A=CH_BH_C, 2H, ³J(SCH₂-H_A) = 7.5 Hz), 3.78 (m, THF, 4H), 1.35 (m, THF, 4H).

 $\begin{array}{l} [\mathbf{Ph_4P_2N_4(S^*Bu)(Sallyl)Lil(THF)}] \ \textbf{(5)}. \ Anal. \ Calcd \ for \ C_{35}H_{42}N_4-OP_2S_2LiI: \ C, \ 52.90; \ H, \ 5.33; \ N, \ 7.05. \ Found: \ C, \ 52.96; \ H, \ 5.92; \ N, \ 6.05. \ ^1H \ NMR \ (d_8-toluene): \ 6.90-8.30 \ (m, \ C_6H_5, \ 20H), \ 5.72 \ (ddt, \ SCH_2CH_A=CH_BH_C, \ 1H, \ ^3J(trans)H_A-H_B) = 17.5 \ Hz, \ ^3J((cis)H_A-H_C) \ = \ 10 \ Hz, \ ^3J(H_A-SCH_2) = 7.5 \ Hz), \ 4.95 \ (ddt, \ SCH_2CH_A=CH_BH_C, \ 1H, \ ^3J(trans)H_B-H_A) \ = \ 17.5 \ Hz, \ ^2J(gem)H_B-H_C) \ = \ 2 \ Hz, \ ^4J(H_B-SCH_2) \ = \ 1 \ Hz), \ 4.92 \ (dd, \ SCH_2CH_A=CH_BH_C, \ 1H, \ ^3J(cis)H_C-H_A) \ = \ 10 \ Hz, \ ^2J(gem)H_C-H_B) \ = \ 2 \ Hz), \ 3.93 \ (dd, \ SCH_2CH_A=CH_BH_C, \ 2H, \ ^3J(SCH_2-H_A) \ = \ 7.5 \ Hz, \ ^4J(SCH_2-H_B) \ = \ 1 \ Hz), \ 3.78 \ (m, \ THF, \ 4H), \ 1.48 \ (m, \ THF, \ 4H), \ 1.35 \ (s, \ SC(CH_{3})_3, \ 9H). \ \end{array}$

Preparation of the Boat Conformers of the $[Ph_4P_2N_4(SR)(SR')]$ Rings. A typical synthesis is described as follows:

[**Ph₄P₂N₄(SMe)₂] (6B**). Dichloromethane (20 mL) was added by cannula to a flask containing solid [Ph₄P₂N₄(SMe)₂LiI(THF)] (0.300 g, 0.413 mmol), causing the immediate formation of a cloudy pale yellow solution. The LiI precipitate was separated from the clear yellow supernatant by filtration, and the filtrate was taken to dryness under vacuum. Recrystallization of the off-white residue from toluene (3 mL) at 0 °C afforded the boat form of [Ph₄P₂N₄(SMe)₂] (**6B**) (0.187 g, 0.359 mmol, 87%) as colorless crystals. Anal. Calcd for C₂₆H₂₆-P₂N₄S₂: C, 59.98; H, 5.03; N, 10.77. Found: C, 59.40; H, 5.09; N, 10.31. FAB MS (*m*/e, %): M⁺ (520, 87), M⁺ – Me (505, 100), M⁺ – 2Me (490, 13). ¹H NMR (d₈-toluene/d₆-benzene): 7.10–8.22 (m, C₆H₅, 20H), 2.55 (t, SCH₃, 6H, ⁴J(PH) = 1 Hz). ¹³C{¹H} NMR (d₈-toluene/d₆-benzene): 127.5–137.47 (m, C₆H₅), 45.41 (t, SCH₃, ³J(PC) = 16 Hz).

All other boat conformers of the $[Ph_4P_2N_4(SR)(SR')]$ rings were obtained as colorless crystals in a similar fashion. The yields, crystallizing conditions, CHN analyses, FAB mass spectrometry data, and ${}^{1}H/{}^{13}C$ NMR data are summarized in the following section. The ${}^{31}P$ NMR data can be found in Table 1.

[**Ph₄P₂N₄(SMe)(SPh)**] (**7B**). A colorless crystalline solid was crystallized from acetonitrile at -18 °C. Yield: 56%. Anal. Calcd for C₃₁H₂₈N₄P₂S₂: C, 63.90; H, 4.84; N, 9.58. Found: C, 64.00; H, 4.22; N, 10.03. FAB MS (*m/e*, %): (M + H)⁺ (583, 100), (M - Me + H)⁺ (568, 79), (M⁺ - Ph - Me) (490, 10). ¹H NMR (C₆D₆): 6.88-8.11 (m, C₆H₅, 25H), 2.61 (t, SCH₃, 3H), ⁴J(PH) = 1 Hz).

[Ph₄P₂N₄(SMe)(SⁱBu)] (8B). A colorless crystalline solid was crystallized from acetonitrile at 23 °C. Yield: 49%. Anal. Calcd for $C_{29}H_{32}N_4P_2S_2(CH_3CN)$: C, 61.67; H, 5.84; N, 11.60. Found: C, 60.67;

Scheme 1. Formation of LiI adducts and the Boat and Chair forms of Ph₄P₂N₄(SR)(SR')^a

^{*a*} Key: (i) R'I (R' = CH₃, C₃H₅), (ii) CH₂Cl₂ or toluene, -LiI; (iii) CH₃CN or CH₂Cl₂ at *ca*. 40 °C. See Table 1 for identification of 1-5 and 6-10; **B** = Boat, **C** = Chair.

Figure 1. ORTEP drawing (50% probability ellipsoids) of $[Ph_4P_2N_4-(SMe)_2]$, 6B.

H, 5.67; N, 11.16. FAB MS (m/e, %): (M + H)⁺ (563, 45), M⁺ – ¹Bu (505, 100), M⁺ – ¹Bu - Me (490, 9). ¹H NMR (CDCl₃): 7.20–8.20 (m, C₆H₅, 20H), 2.89 (s, SCH₃, 3H), 2.04 (s, CH₃CN, 3H), 1.37 (s, SC(CH₃)₃, 9H). ¹³C{¹H} NMR (CDCl₃): 127.7–137.9 (m, C₆H₅), 57.12 (t, SC(CH₃)₃, ³J(PC) = 15 Hz), 44.36 (t, SCH₃, ³J(PC) = 16 Hz), 22.73 (s, SC(CH₃)₃).

[**Ph₄P₂N₄(SPh)(Sallyl)**] (9B). A colorless crystalline solid was crystallized from Et₂O at 23 °C. Yield: 49%. Anal. Calcd for $C_{33}H_{30}$ -N₄P₂S₂: C, 65.11; H, 4.97; N, 9.21. Found: C, 64.44; H, 5.40; N, 8.79. FAB MS (*m/e*, %): (M + H)⁺ (609, 33), (M - C₃H₅ + H)⁺ (567, 100), (M - C₃H₅ - Ph + H)⁺ (491, 18). ¹H NMR (C₆D₆): 7.00-8.70 (m, C₆H₅, 25H), 5.86 (ddt, SCH₂CH_A=CH_BH_C, 1H, ³*J*((trans)-H_A-H_B) = 18 Hz, ³*J*((cis)H_A-H_C) = 10 Hz, ³*J*(H_A-SCH₂) = 7.5 Hz), 5.00-4.91 (m, SCH₂CH_A=CH_BH_C, 2H), 3.76 (dd, SCH₂CH_A=CH_BH_C, 2H, ³*J*(SCH₂-H_A) = 7.5 Hz, ⁴*J*(SCH₂-H_B) = 2 Hz).

[Ph_P_2N_4(S'Bu)(Sallyl)] (10B). A colorless crystalline solid was crystallized from Et₂O at 23 °C. Yield: 32%. Anal. Calcd for $C_{31}H_{34}$ -N₄P₂S₂: C, 63.25; H, 5.82; N, 9.52. Found: C, 62.89; H, 5.67; N, 9.81. FAB MS (*m/e*, %): (M + H)⁺ (589, 53), (M - C₃H₅)⁺ (547, 83), (M - C₃H₅ - C₄H₉+H)⁺ (491, 100). ¹H NMR (d₈-toluene): 6.99-8.20 (m, C₆H₅, 20H), 5.71 (ddt, SCH₂CH_A=CH_BH_C, 1H, ³*J*((trans)-H_A-H_B) = 17 Hz, ³*J*((cis)H_A-H_C) = 10 Hz, ³*J*(H_A-SCH₂) = 7.5 Hz), 4.96-4.87 (m, SCH₂CH_A=CH_BH_C, 2H), 3.89 (d, SCH₂CH_A=CH_BH_C, 2H, ³*J*(SCH₂-H_A) = 7.5 Hz). ¹³C{¹H</sup>} NMR (d₈-toluene): 128.8-139.0 (m, C₆H₅), 120.77 (s, SCH₂CH=CH₂), 62.64 (t, SCH₂CH=CH₂, ³*J*(PC) = 11 Hz), 57.04 (t, SC(CH₃)₃, ³*J*(PC) = 15 Hz), 22.86 (s, SC-(CH₃)₃).

Figure 2. ORTEP drawing (50% probability ellipsoids) of [Ph₄P₂N₄(S-¹Bu)(Sallyl)], **10B**.

Conversion of [Ph₄P₂N₄(SR)(SR')](Boat) to [Ph₄P₂N₄(SR)(SR')]-(Chair). Gentle heating of the boat conformer in either dichloromethane or acetonitrile at 35–40 °C for a minimum of 12 h results in essentially quantitative conversion to the thermodynamically more favorable chair conformer. Selected proton and ${}^{13}C{}^{1}H$ NMR data together with FAB MS data for the chair conformers are given below. The ${}^{31}P{}^{1}H$ NMR data are listed in Table 1.

[**Ph₄P₂N₄(SMe)₂**] (6C). FAB MS (m/e, %): M⁺ (520, 6.7), (M⁺ – Me) (505, 100), (M⁺ - 2Me) (490, 39). ¹H NMR (CDCl₃, 23 °C): 8.0–7.3 (m, C₆H₅, 20H), 2.80 (t, SCH₃, 6H, ⁴J(PH) = 1 Hz). ¹³C{¹H} NMR (CDCl₃): 45.7 (t, SCH₃, ³J(PC) = 21 Hz).

[**Ph₄P₂N₄(SMe)(SPh)] (7C)**. ¹H NMR (CDCl₃, 23 °C): 7.91–7.28 (m, C₆H₅, 25H), 2.87 (t, SCH₃, 3H, ⁴J(PH) = 1 Hz).

[Ph₄P₂N₄(SMe)(SⁱBu)] (8C). ¹H NMR (CDCl₃, 23 °C): 7.97–7.32 (m, C₆H₅, 20H), 2.87 (t, SCH₃, 3H, ⁴J(PH) = 1 Hz), 1.28 (s, C(CH₃)₃, 9H).

[**Ph₄P₂N₄(SPh)(Sallyl**)] (9C). ¹H NMR (CD₂Cl₂, 23 °C): 7.00– 8.30 (m, C₆H₅, 25H), 5.76 (ddt, SCH₂CH_A=CH_BH_C, 1H, ³J(trans)H_A– H_B) = 17 Hz, ³J(cis)H_A-H_C) = 10 Hz, ³J(H_A-SCH₂) = 7.5 Hz), 5.20– 5.00 (m, SCH₂CH_A=CH_BH_C, 2H), 3.48 (d, SCH₂CH_A=CH_BH_C, 2H, ³J(SCH₂-H_A) = 7.5 Hz).

[**Ph₄P₂N₄(S'Bu)(Sally)] (10C)**. FAB MS (m/e, %): M⁺ (588. 35), (M - C₃H₅)⁺ (547, 14), (M - C₃H₅ - C₄H₉)⁺ (490, 24). ¹H NMR (d₈-toluene): 8.13-7.16 (m, C₆H₅, 20H), 5.83 (ddt, SCH₂CH_A=CH_BH_C, 1H, ³J((trans)H_A-H_B) = 18 Hz, ³J((cis)H_A-H_C) = 10 Hz, ³J((H_A-SCH₂) = 7.5 Hz), 5.06-4.98 (m, SCH₂CH_A=CH_BH_C, 2H), 3.63 (d,

Figure 3. ORTEP drawing (50% probability ellipsoids) of $[Ph_4P_2N_4-(Sallyl)_2]$, 11B.

Table 3. Selected Bond Lengths (Å) and Bond Angles (deg) for $Ph_4P_2N_4(SMe)_2$, 6B, and $Ph_4P_2N_4(S'Bu)(Sallyl)$, 10B

	6B	10 B		6 B	10 B
		Dist	ances		
S(1) - N(1)	1.612(4)	1.616(4)	P(2) - N(3)	1.628(4)	1.611(4)
S(1) - N(2)	1.627(4)	1.619(4)	S(1)-C(25)	1.776(5)	1.844(5)
S(2) - N(3)	1.625(4)	1.610(4)	S(2)-C(26)	1.786(5)	
S(2) - N(4)	1.626(4)	1.615(4)	S(2)-C(29)		1.828(5)
P(1) - N(1)	1.610(4)	1.610(4)	C(29)-C(30)		1.453(7)
P(1) - N(4)	1.623(4)	1.618(4)	C(30) - C(31)		1.181(8)
P(2)-N(2)	1.609(4)	1.606(4)			
		An	gles		
N(1) - S(1) - N(2)	110.0(2)	108.6(2)	C(25)-S(1)-N(1)	99.5(2)	99.1(2)
N(3) - S(2) - N(4)	110.6(2)	114.1(2)	C(25) - S(1) - N(2)	97.5(2)	101.1(2)
N(1) - P(1) - N(4)	120.0(2)	117.7(2)	C(26) - S(2) - N(3)	99.5(2)	
N(2) - P(2) - N(3)	120.1(2)	118.6(2)	C(26) - S(2) - N(4)	97.5(2)	
S(1) - N(1) - P(1)	121.8(2)	120.8(2)	C(29)-S(2)-N(3)		105.1(2)
S(1) - N(2) - P(2)	121.3(2)	117.8(2)	C(29)-S(2)-N(4)		97.5(2)
S(2) - N(3) - P(2)	117.3(2)	128.7(2)	C(29)-C(30)-C(31)		131.4(8)
S(2)-N(4)-P(1)	118.0(2)	121.6(3)			

 $SCH_2CH_A = CH_BH_C$, 2H, ${}^{3}J((SCH_2 - H_A) = 7.5 \text{ Hz})$. ${}^{13}C{}^{1}H$ NMR (d₈-toluene): 138.7-128.1 (m, C₆H₅), 121.19 (s, SCH₂CH=CH₂), 63.22 (t, SCH₂CH=CH₂, ${}^{3}J((PC) = 20 \text{ Hz})$, 56.22 (t, SC(CH₃)₃, ${}^{3}J((PC) =$ 15 Hz), 22.96 (s, SC(CH₃)₃).

Preparation of [Ph₄P₂N₄(Sallyl)₂] (11B). Neat allyl iodide (0.37 mL, 4.06 mmol) was added dropwise by syringe to a yellow slurry of $Na_2[Ph_4P_2N_4S_2]$ (1.09 g, 2.03 mmol) in THF (40 mL) at -78 °C. The mixture was warmed to room temperature and stirring was continued for 1 h until all of the $Na_2[Ph_4P_2N_4S_2]$ had dissolved. The solvent was removed under vacuum and toluene (40 mL) was added, giving a cloudy pale yellow solution. The NaI precipitate was removed by filtration, and the filtrate was taken to dryness under vacuum. Recrystallization of the pale yellow residue from CH2Cl2-hexane at 23 °C afforded [Ph₄P₂N₄(Sallyl)₂] (0.65 g, 1.14 mmol, 56%) as colorless crystals. Anal. Calcd for C₃₀H₃₀N₄P₂S₂: C, 62.92; H, 5.28; N, 9.79. Found: C, 62.70; H, 5.24; N, 9.75. FAB MS (m/e, %): (M + H)⁺(573, 52), (M - $2(C_3H_5))^+(490, 100)$. ³¹P{¹H} NMR (THF, 23 °C, D₂O lock): 15.0 (singlet). ¹H NMR (d₆-benzene): 7.08-8.28 (m, C₆H₅, 20H), 5.85 (ddt, $SCH_2CH_A = CH_BH_C$, 1H, ${}^{3}J((trans)H_A - H_B) = 17$ Hz, ${}^{3}J((cis)H_A - H_C)$ $= 10 \text{ Hz}, {}^{3}\text{H}(\text{H}_{\text{A}}-\text{SC}H_{2}) = 7.5 \text{ Hz}), 5.02-4.92 \text{ (m, SCH}_{2}\text{CH}_{\text{A}}=\text{C}H_{\text{B}}H_{\text{C}},$ 2H), 3.75 (d, SCH₂CH_A=CH_BH_C, 2H, ${}^{3}J(SCH_{2}-H_{A}) = 7.5$ Hz). ${}^{13}C$ -{¹H} NMR (d_6 -benzene): 132.7-128.25 (m, C_6H_5), 121.19 (s, SCH₂- $CH=CH_2$), 63.38 (t, $SCH_2CH=CH_2$, ${}^{3}J(PC) = 15$ Hz).

Preparation of [Ph₄P₂N₃(NMe)(SPh)₂][CF₃SO₃] (12). Methyl trifluoromethanesulfonate (0.018 mL, 0.16 mmol) was added dropwise by syringe to a rapidly stirred, colorless solution of [Ph₄P₂N₄(SPh)₂] (0.100 g, 0.155 mmol) in dichloromethane (20 mL) at 23 °C. After 2 h of stirring, the solvent was removed under vacuum and the residue was recrystallized from a 1:1 mixture of CH₂Cl₂/Et₂O to give [Ph₄P₂N₃(NMe)(SPh)₂][CF₃SO₃] (0.090 g, 0.11 mmol, 72%) as colorless crystals. Anal. Calcd for C₃₈H₃₃N₄O₃F₃P₂S₃: C, 56.43; H, 4.11; N, 6.93. Found: C, 56.10; H, 4.17; N, 7.36. FAB MS (*m/e*, %) (M =

Figure 4. ORTEP drawing (50% probability ellipsoids) of $[Ph_4P_2N_3(NMe)(SPh)_2][CF_3SO_3]$, 12. Only the cation is shown.

Table 4.	Selected	Bond	Lengths (Å)	and	Bond	Angles	(deg)	for
$[Ph_4P_2N_4($	Sallyl)2],	11 B ^a						

Distances				
S(1) - N(1)	1.614(4)	S(2) - N(4)	1.605(4)	
S(1) - N(2)	1.614(4)	S(2) - C(28)	1.815(6)	
S(1) - C(25)	1.829(5)	P(2) - N(2)	1.606(4)	
P(1) - N(1)	1.596(4)	P(2) - N(3)	1.615(4)	
P(1) - N(4)	1.617(4)	C(28) - C(29)	1.497(8)	
C(25) - C(26)	1.499(8)	C(29)-C(30a)	1.156(12)	
C(26) - C(27)	1.311(8)	C(29) - C(30b)	1.176(19)	
S(2) - N(3)	1.627(4)	C(30a) - C(30b)	1.322(22)	
	А	ngles		
N(1) - S(1) - N(2)	114.0(2)	N(2) - P(2) - N(3)	120.1(2)	
N(1) - P(1) - N(4)	120.1(2)	S(1) - N(2) - P(2)	127.9(3)	
S(1) - N(1) - P(1)	123.8(3)	S(2) - N(4) - P(1)	129.4(3)	
S(2) - N(3) - P(2)	118.5(2)	N(1) - S(1) - C(25)	97.5(2)	
N(2) = S(1) = C(25)	105.2(2)	N(4) - S(2) - C(28)	105.9(2)	
N(3) - S(2) - C(28)	98.0(2)	C(28) - C(29) - C(30a)	130.3(9)	
C(25)-C(26)-C(27)	125.5(7)	C(28) - C(29) - C(30b)	141.1(12)	
N(3) - S(2) - N(4)	113.4(2)	C(30a) - C(29) - C(30b)	69.1(12)	

 a C(30a) and C(30b) represent the two sites of the disordered C(30) atom.

cation of **12**): M⁺ (659, 100), (M – Ph)⁺ (582, 4). ${}^{31}P{}^{1}H{}$ (CD₂Cl₂, 23 °C): 35.97 (d, ${}^{4}J(PP) = 3$ Hz), 33.19 (d, ${}^{4}J(PP) = 3$ Hz). ${}^{1}H$ NMR (CD₂Cl₂, 23 °C): 7.33–8.29 (m, C₆H₅, 30H), 2.79 (d, NCH₃, 3H, ${}^{3}J(PH) = 8$ Hz).

X-ray Data Collection and Structure Solutions. Suitable single crystals of 6B, 10B, 11B, and 12 were grown from toluene, diethyl ether, dichloromethane-hexane, and dichloromethane-diethyl ether, respectively. All intensity measurements were made on a Rigaku AFC6S diffractometer with Mo Ka radiation. Accurate cell constants along with orientation matrices were obtained from a least squares refinement of the setting angles of 25 reflections in the range $18 < 2\theta$ < 40°. Intensity data were collected at either 23 °C (10B and 12) or -123 °C (6B and 11B) using the ω -2 θ scan technique. The intensities of three standard reflections were measured every 200 reflections to check for any decay. The data were corrected for Lorentz and polarization effects and for absorption (DIFABS¹²). Unit cell and other crystallographic data related to the crystal structures of 6B, 10B, 11B, and 12 are reported in Table 2. All four structures were solved by direct methods¹³ and expanded using Fourier techniques.¹⁴ The nonhydrogen atoms in each structure were refined anisotropically. Hydrogen atoms were included but not refined. A phenyl group [C(1)-C(6)] and an allyl C [C(30)] in 11B were found to be disordered and were allowed to refine over two sites; the phenyl groups were treated

- (12) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.
- (13) Fan Hai-Fu. Structure Analysis Programs with Intelligent Control, Rigaku Corp., Tokyo, Japan, 1991.
 (14) Particular Control (1997).
- (14) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.

Table 5. Selected Bond Lengths (Å) and Bond Angles (deg) for $[Ph_4P_2N_3(NMe)(SPh)_2][CF_3SO_3]$, 12

Distances				
S(1) - N(1)	1.700(7)	P(1) - N(1)	1.692(8)	
S(1) - N(2)	1.594(8)	P(1) - N(4)	1.577(8)	
S(2) - N(3)	1.633(8)	P(2) - N(2)	1.626(9)	
S(2) - N(4)	1.632(9)	P(2) - N(3)	1.631(8)	
S(1) - C(26)	1.79(1)	N(1) - C(1)	1.48(1)	
S(2) - C(32)	1.80(1)			
	Ar	igles		
N(1) - S(1) - N(2)	111.2(4)	P(1) - N(4) - S(2)	122.2(6)	
N(3) - S(2) - N(4)	109.9(5)	P(1) - N(1) - C(1)	115.6(7)	
N(4) - P(1) - N(1)	117.2(5)	S(1) - N(1) - C(1)	116.5(7)	
N(3) - P(2) - N(2)	117.1(4)	N(1) - S(1) - C(26)	99.6(5)	
P(2) = N(3) = S(2)	114.6(5)	N(2) - S(1) - C(26)	103.9(5)	
P(2) = N(2) = S(1)	115.8(5)	N(3) - S(2) - C(32)	100.5(5)	
P(1) = N(1) = S(1)	116.9(4)	N(4) - S(2) - C(32)	99.3(5)	

Table 6. Atomic Coordinates and B_{eq} Values (Å²) for Ph₄P₂N₄(SMe)₂, **6B**

and the second se				
atom	x	у	z	$B_{eq}{}^a$
S (1)	0.40155(4)	0.0650(1)	0.64795(10)	1.96(3)
S(2)	0.35110(4)	0.1857(1)	0.38489(10)	1.77(3)
P(1)	0.42799(4)	0.2210(1)	0.51751(10)	1.69(3)
P(2)	0.33955(4)	-0.0199(1)	0.47532(10)	1.53(3)
N(1)	0.4340(1)	0.1069(3)	0.5881(3)	1.91(9)
N(2)	0.3761(1)	-0.0401(3)	0.5817(3)	1.76(9)
N(3)	0.3466(1)	0.0498(3)	0.3727(3)	1.64(9)
N(4)	0.3969(1)	0.2236(3)	0.3973(3)	1.74(9)
C(1)	0.4753(1)	0.2426(4)	0.4918(3)	1.6(1)
C(2)	0.4844(2)	0.3428(5)	0.4492(5)	3.4(1)
C(3)	0.5200(2)	0.3555(5)	0.4220(5)	4.0(2)
C(4)	0.5469(2)	0.2699(5)	0.4389(4)	3.2(1)
C(5)	0.5390(2)	0.1714(5)	0.4839(5)	3.4(1)
C(6)	0.5033(2)	0.1573(4)	0.5103(4)	2.7(1)
C(7)	0.4194(1)	0.3398(4)	0.5976(4)	1.9(1)
C(8)	0.4396(2)	0.3458(4)	0.7071(4)	2.6(1)
C(9)	0.4343(2)	0.4364(5)	0.7694(4)	3.0(1)
C(10)	0.4085(2)	0.5209(4)	0.7240(4)	2.8(1)
C(11)	0.3868(2)	0.5153(4)	0.6163(4)	2.7(1)
C(12)	0.3927(1)	0.4255(4)	0.5532(4)	2.2(1)
C(13)	0.3275(1)	-0.1596(4)	0.4228(3)	1.6(1)
C(14)	0.3503(1)	-0.2071(4)	0.3603(4)	2.2(1)
C(15)	0.3433(2)	-0.3172(4)	0.3227(4)	2.7(1)
C(16)	0.3138(2)	-0.3800(4)	0.3481(4)	2.7(1)
C(17)	0.2914(2)	-0.3342(4)	0.4105(4)	2.6(1)
C(18)	0.2982(1)	-0.2242(4)	0.4481(4)	2.2(1)
C(19)	0.2960(1)	0.0349(4)	0.5094(4)	1.6(1)
C(20)	0.2964(1)	0.0573(4)	0.6161(4)	1.9(1)
C(21)	0.2633(2)	0.1047(4)	0.6390(4)	2.3(1)
C(22)	0.2293(2)	0.1278(4)	0.5571(4)	2.6(1)
C(23)	0.2286(1)	0.1046(4)	0.4515(4)	2.6(1)
C(24)	0.2615(1)	0.0608(4)	0.4269(4)	2.2(1)
C(25)	0.4331(2)	-0.0145(5)	0.7550(4)	3.3(1)
C(26)	0.3310(1)	0.2255(4)	0.2463(4)	2.8(1)

^{*a*} $B_{eq} = \frac{8}{3}\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha).$

as regular hexagons during refinement in this structure. Neutral atom scattering factors¹⁵ and anomalous dispersion terms¹⁶ were taken from the usual sources. All calculations were performed using TEXSAN;¹⁷ **11B** was refined by the program SHELX 76.¹⁸ The most significant bond lengths and angles for **6B**, **10B**, **11B**, and **12** are given in Tables 3-5. Isotropic thermal parameters and atomic coordinates for the four structures are listed in Tables 6-9.

- (15) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
- (16) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
- (17) TEXSAN Crystal Structure Analysis Package, Molecular Structure Corp., 1985 and 1992.
- (18) Sheldrick, G. M. SHELX 76. A Program for Crystal Structure Analysis, University Chemical Laboratory, Cambridge, England, 1976.

Table 7.	Atomic	Coordinates	and B_{eq}	Values	(A^2) for
$Ph_4P_2N_4(3)$	S ^t Bu)(Sal	lyl), 10B			

atom	x	у	z	$B_{\rm eq}{}^a$
S (1)	0.7139(1)	0.32553(9)	0.2972(1)	3.09(4)
S(2)	0.6959(1)	0.22275(9)	0.6423(1)	3.34(4)
P(1)	0.8765(1)	0.32777(9)	0.5673(1)	2.81(4)
P(2)	0.6139(1)	0.17620(10)	0.3424(1)	3.03(4)
N(1)	0.8561(4)	0.3384(3)	0.3985(4)	3.5(1)
N(2)	0.7030(4)	0.2253(3)	0.2587(4)	3.6(1)
N(3)	0.5896(4)	0.2145(3)	0.4964(4)	3.2(1)
N(4)	0.8438(4)	0.2388(3)	0.6202(4)	3.2(1)
C(1)	1.0526(5)	0.3318(3)	0.6269(5)	2.7(1)
C(2)	1.1294(5)	0.3607(4)	0.5398(5)	4.0(2)
C(3)	1.2675(6)	0.3605(4)	0.5839(6)	5.0(2)
C(4)	1.3261(5)	0.3342(4)	0.7158(6)	5.0(2)
C(5)	1.2508(6)	0.3075(4)	0.8042(6)	4.6(2)
C(6)	1.1130(5)	0.3057(3)	0.7589(5)	3.8(1)
C(7)	0.7959(5)	0.4181(3)	0.6546(5)	2.8(1)
C(8)	0.6577(5)	0.4324(3)	0.6253(5)	3.6(1)
C(9)	0.5951(5)	0.5031(4)	0.6845(6)	4.3(2)
C(10)	0.6676(6)	0.5604(4)	0.7725(6)	4.8(2)
C(11)	0.8041(6)	0.5475(4)	0.8020(6)	4.8(2)
C(12)	0.8657(5)	0.4759(4)	0.7435(6)	3.9(2)
C(13)	0.4462(5)	0.1694(3)	0.2414(5)	3.4(1)
C(14)	0.3364(6)	0.1974(4)	0.2994(6)	5.1(2)
C(15)	0.2077(6)	0.1903(5)	0.2199(8)	7.3(2)
C(16)	0.1929(7)	0.1562(5)	0.0860(8)	7.5(3)
C(17)	0.3005(7)	0.1285(5)	0.0274(7)	7.1(2)
C(18)	0.4290(6)	0.1339(4)	0.1058(6)	5.6(2)
C(19)	0.6872(5)	0.0694(3)	0.3432(5)	3.3(1)
C(20)	0.8220(6)	0.0515(4)	0.3398(6)	5.0(2)
C(21)	0.8808(7)	-0.0291(6)	0.3594(8)	7.0(3)
C(22)	0.8098(9)	-0.0917(5)	0.3812(8)	8.0(3)
C(23)	0.6767(9)	-0.0782(4)	0.3817(7)	7.3(2)
C(24)	0.6159(6)	0.0042(4)	0.3635(6)	4.9(2)
C(25)	0.7494(5)	0.3608(3)	0.1298(5)	3.3(1)
C(26)	0.8732(6)	0.3127(4)	0.0948(6)	5.6(2)
C(27)	0.6280(5)	0.3441(4)	0.0158(5)	6.4(2)
C(28)	0.7591(6)	0.4548(4)	0.1514(6)	5.8(2)
C(29)	0.7337(5)	0.1147(3)	0.7015(5)	4.0(2)
C(30)	0.8206(8)	0.1101(4)	0.8397(6)	7.0(2)
C(31)	0.8067(10)	0.0820(5)	0.9464(7)	11.7(3)

 ${}^{a}B_{eq} = {}^{8}\!/_{3}\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}\cos\gamma + 2U_{13}aa^{*}cc^{*}\cos\beta + 2U_{23}bb^{*}cc^{*}\cos\alpha).$

Results and Discussion

Synthesis of $[Ph_4P_2N_4(SR)(SR')LiI(THF)]$ (1, R = R' =Me; 2, R = Ph, R' = Me; 3, $R = {}^{t}Bu$, R' = Me; 4, R = Ph, $\mathbf{R}' = \mathbf{allyl}; 5, \mathbf{R} = {}^{t}\mathbf{Bu}, \mathbf{R}' = \mathbf{allyl}).$ The LiI adducts 1-5 are produced in quantitative yields by the reaction of the dimers $[\text{Li}(\text{Ph}_4\text{P}_2\text{N}_4\text{S}_2\text{R})(\text{THF})]_2^6$ with 2 molar equiv of R'I (R' = Me, allyl) in THF at room temperature. Compounds 1-5 were isolated as hygroscopic, pale yellow crystalline solids and characterized by ¹H, ⁷Li, and ³¹P NMR spectroscopy (see Table 1). All five compounds show a singlet in the ⁷Li NMR spectrum in the range $\delta 0.45-0.74$ (cf. $\delta(^7\text{Li}) = -0.11$ ppm for LiI in THF). This strongly supports the notion that the LiI in these adducts is bonded to the P2N4S2 ring. The ³¹P NMR resonances for 1-5 appear as singlets in the narrow range δ 14.7–16.7. Thus the LiI must be bonded in a symmetrical fashion to the $P_2N_4S_2$ ring. In view of the known coordination mode of lithium in the dimers $[Li(Ph_4P_2N_4S_2R)(THF)]_{2,6}$ we propose that LiI is coordinated to a pair of nitrogen atoms of an NSN unit in 1-5 (see Scheme 1). We note, however, that only one $S-CH_3$ resonance is observed in the ¹H NMR spectrum of 1. Unfortunately, however, numerous attempts to obtain crystals of one of these adducts suitable for an X-ray structural determination failed owing to the facile loss of LiI that occurs in solution.

Synthesis of $Ph_4P_2N_4(SR)(SR')$ (6–10). Dissolution of the adducts 1-5 in either CH_2Cl_2 or toluene results in the immediate precipitation of LiI and the concomitant formation of the boat

Table 8. Atomic Coordinates ($\times 10^{14}$) and U_{eq} Values (Å² $\times 10^{3}$) for Ph₄P₂N₄(Sallyl)₂, **11B**^{*a*}

atom	x	у	z	sof	$U_{ m eq}$
S (1)	2992(1)	933(1)	4457(1)		13(1)
S(2)	1749(1)	-1043(1)	4838(1)		12(1)
P(1)	3098(1)	-811(1)	4504(1)		10(1)
P(2)	1716(1)	670(1)	4975(1)		8(1)
N(1)	2987(2)	40(2)	4049(2)		18(2)
N(2)	2448(2)	1034(3)	5049(2)		13(2)
N(3)	1538(2)	-148(2)	4469(2)		11(2)
N(4)	2528(2)	-1175(3)	4977(3)		16(2)
C(1)	3787(2)	-771(4)	5229(3)		15(3)
C(2)	3673(2)	-689(4)	5994(3)	0.57(1)	23(4)
C(3)	4197(2)	-583(4)	6558(3)	0.57(1)	46(5)
C(4)	4837(2)	-558(4)	6358(3)	0.57(1)	42(5)
C(5)	4952(2)	-639(4)	5593(3)	0.57(1)	43(5)
C(6)	4427(2)	-745(4)	5029(3)	0.57(1)	32(5)
C(2b)*	3737(4)	-362(6)	5906(6)	0.43(1)	16(3)
C(3b)*	4271(4)	-295(6)	6464(6)	0.43(1)	36(4)
C(4b)*	4857(4)	-700(6)	6367(6)	0.43(1)	46(5)
C(5b)*	4908(4)	-1172(6)	5712(6)	0.43(1)	38(4)
C(6b)*	4374(4)	-1239(6)	5154(6)	0.43(1)	29(3)
C(7)	3300(2)	-1509(2)	3765(2)		12(3)
C(8)	3611(2)	-1210(2)	3153(2)		23(3)
C(9)	3770(2)	-1750(2)	2582(2)		33(3)
C(10)	3618(2)	-2587(2)	2624(2)		28(3)
C(11)	3307(2)	-2885(2)	3236(2)		23(3)
C(12)	3148(2)	-2346(2)	3807(2)		18(3)
C(13)	1135(2)	1418(2)	4560(2)		10(2)
C(14)	541(2)	1159(2)	4176(2)		25(3)
C(15)	87(2)	1740(2)	3864(2)		33(4)
C(16)	228(2)	2581(2)	3936(2)		33(3)
C(17)	822(2)	2841(2)	4320(2)		28(3)
C(18)	1276(2)	2260(2)	4632(2)		19(3)
C(19)	1567(1)	519(2)	5961(2)		11(3)
C(20)	940(1)	287(2)	6117(2)		24(3)
C(21)	824(1)	86(2)	6862(2)		33(3)
C(22)	1335(1)	118(2)	7452(2)		30(3)
C(23)	1962(1)	350(2)	7296(2)		28(3)
C(24)	2078(1)	551(2)	6551(2)		22(3)
C(25)	2681(3)	1533(4)	3615(3)		22(3)
C(26)	3164(3)	1531(4)	3032(4)		36(3)
C(27)	3540(4)	2152(5)	2883(5)		68(4)
C(28)	1467(3)	-1679(3)	4018(3)		24(3)
C(29)	736(3)	-1641(4)	3855(5)	0.50 (1)	48(4)
C(30)	339(7)	-2105(8)	3999(9)	0.70(1)	87(5)
(30h)*	417(10)	-1695(13)	114/(12)	0.30(1)	-28(4)

^a Starred atoms were allowed isotropic temperature factors. Sof is the site occupancy factor. $U_{eq} = \frac{1}{3}$ (trace of the orthogonalized U_{ij} tensors).

conformers of the eight-membered rings $Ph_4P_2N_4(SR)(SR')$ **6-10B** (see Scheme 1). These heterocycles were isolated as mildly air-sensitive colorless, crystalline solids in yields ranging from 32 to 87%. They were identified by elemental analysis, FAB mass spectroscopy, and ¹H, ¹³C, and ³¹P NMR spectroscopy. Compounds **6-10B** exhibit single ³¹P NMR resonances with chemical shifts in the narrow range δ 14.1 – 16.7 (see Table 1), i.e. not significantly different from those of the corresponding LiI adducts, suggesting that the conformation of the eight-membered ring does not change on removal of LiI. This inference was confirmed by the X-ray structure determinations of two derivatives. **6B** and **10B**, described below.

X-ray Structures of $Ph_4P_2N_4(SMe)_2$ (6B) and $Ph_4P_2N_4(S^{t}Bu)(Sallyl)$ (10B). ORTEP drawings of 6B and 10B with the appropriate atomic numbering scheme are displayed in Figures 1 and 2, respectively. The eight-membered $P_2N_4S_2$ ring in 6B adopts a slightly distorted boat conformation in which the two sulfur atoms S(1) and S(2) serve as the prow and stern. The exocyclic methyl groups attached to sulfur are equatorial with respect to a least squares plane passing through the four nitrogen and two phosphorus atoms of the ring. The phosphorus atoms, P(1) and P(2), however, are lifted out of the best plane

Table 9. Atomic Coordinates and B_{eq} Values (Å²) for [Ph₄P₂N₃(NMe)(SPh)₂][CF₃SO₃], **12**

		5 . 5		
atom	x	у	z	$B_{eq}{}^a$
S(1)	0.3356	0.0717(1)	0.2237	3.59(7)
S(2)	0.5087(4)	-0.0892(1)	0.2438(2)	3.82(7)
S(3)	0.9698(5)	0.2021(2)	0.5555(3)	6.9(1)
P (1)	0.5818(4)	0.0257(2)	0.1794(2)	3.78(8)
P(2)	0.3565(4)	-0.0218(2)	0.3257(2)	3.58(8)
F(1)	1.0801(17)	0.0983(6)	0.6004(10)	20.1(7)
F(2)	1.0448(14)	0.1609(9)	0.6764(7)	22.1(7)
F(3)	1.2021(10)	0.1730(8)	0.6246(6)	16.9(6)
O (1)	0.8379(12)	0.1759(6)	0.5563(7)	12.8(5)
O(2)	0.9744(12)	0.2636(5)	0.5852(8)	14.0(5)
O(3)	1.0242(12)	0.1944(9)	0.5013(6)	21.3(7)
N(1)	0.4166(8)	0.0491(4)	0.1572(4)	3.2(2)
N(2)	0.2683(8)	0.0100(4)	0.2550(5)	4.2(2)
N(3)	0.5035(8)	-0.0544(4)	0.3192(4)	3.9(2)
N(4)	0.6100(10)	-0.0481(4)	0.2020(5)	5.6(3)
C(1)	0.3346(12)	0.0121(6)	0.0989(6)	5.8(4)
C(2)	0.6594(10)	0.0830(6)	0.2464(6)	4.2(3)
C(3)	0.6329(12)	0.1491(6)	0.2414(7)	4.9(4)
C(4)	0.7044(14)	0.1909(7)	0.2890(8)	6.4(4)
C(5)	0.8015(16)	0.1672(9)	0.3463(7)	7.0(5)
C(6)	0.8273(14)	0.0995(9)	0.3479(7)	7.2(5)
C(7)	0.7605(12)	0.0600(6)	0.2998(7)	5.4(4)
C(8)	0.6564(11)	0.0391(6)	0.1021(6)	4.4(3)
C(9)	0.7506(13)	-0.0033(6)	0.0854(7)	6.1(4)
C(10)	0.8149(15)	0.0098(8)	0.0281(8)	7.8(5)
C(11)	0.7809(17)	0.0658(8)	-0.0094(7)	7.6(5)
C(12)	0.6933(15)	0.1089(7)	0.0089(7)	6.5(5)
C(13)	0.6275(12)	0.0956(6)	0.0635(7)	5.3(4)
C(14)	0.3923(10)	0.0383(5)	0.3931(5)	3.3(3)
C(15)	0.5219(12)	0.0610(7)	0.4193(7)	5.7(4)
C(16)	0.5446(15)	0.1110(7)	0.4684(8)	7.1(5)
C(17)	0.4373(20)	0.1387(6)	0.4922(7)	6.3(4)
C(18)	0.3049(16)	0.1169(7)	0.4656(8)	6.4(5)
C(19)	0.2844(11)	0.0674(6)	0.4168(6)	4.4(3)
C(20)	0.2440(11)	-0.0789(6)	0.3570(5)	3.5(3)
C(21)	0.2947(12)	-0.1220(6)	0.4085(7)	5.4(4)
C(22)	0.2127(14)	-0.1653(7)	0.4367(7)	6.7(4)
C(23)	0.0735(16)	-0.1672(7)	0.4067(8)	6.5(5)
C(24)	0.0228(12)	-0.1215(6)	0.3601(7)	5.6(4)
C(25)	0.1043(13)	-0.0777(6)	0.3285(7)	5.9(4)
C(26)	0.1932(11)	0.1145(6)	0.1747(6)	4.3(3)
C(27)	0.2156(12)	0.1622(6)	0.1283(6)	4.8(4)
C(28)	0.1105(12)	0.2019(6)	0.1014(6)	5.2(4)
C(29)	-0.0196(12)	0.1946(7)	0.1167(7)	6.3(4)
C(30)	-0.0379(11)	0.1456(8_	0.1637(7)	6.9(5)
C(31)	0.0704(13)	0.1060(6)	0.1939(7)	6.2(4)
C(32)	0.6174(11)	-0.1582(5)	0.2719(7)	4.0(3)
C(33)	0.7169(12)	-0.1764(6)	0.2351(6)	4.7(3)
C(34)	0.7905(14)	-0.2331(7)	0.2593(9)	8.0(5)
C(35)	0.7709(15)	-0.2668(6)	0.3165(7)	5.9(4)
C(36)	0.6688(17)	-0.2473(7)	0.3510(7)	7.3(5)
C(37)	0.5949(14)	-0.1927(6)	0.3292(6)	5.6(4)
C(38)	1.0781(22)	0.1611(14)	0.6211(12)	11.0(8)

 ${}^{a}B_{eq} = {}^{8}\!/_{3}\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}\cos\gamma + 2U_{13}aa^{*}cc^{*}\cos\beta + 2U_{23}bb^{*}cc^{*}\cos\alpha).$

by *ca*. 0.3 Å. Thus the $P_2N_4S_2$ ring in **6B** can be described as intermediate between boat and crown conformations.

The unsymmetrical S,S'-diorgano derivative **10B** assumes a twisted boat conformation in the solid state. The envelope conformation of the P(1)N(1)S(1)N(2)P(2) segment of the ring closely resembles that of the two identical halves of **6B**, which are related by a mirror plane passing through P(1) and P(2). The 'Bu group in **10B** is in an equatorial position, and the structural parameters for this half of the ring are virtually identical to those of **6B** (see Table 3–). The other half of the ring in **10B**, however, is twisted such that S(2) (the sulfur attached to the allyl group) becomes coplanar with P(1), P(2), N(1), and N(2) to within 0.06 Å, and the nitrogen atoms N(3) and N(4) are displaced on opposite sides of this plane by 0.6 and 0.79 Å, respectively. A close examination of the nonbond-

ing contacts in **10B** reveals that the distance S(2)-C(30) is 2.75-(1) Å, suggesting that a weak interaction between that sulfur atom and the olefinic carbon is responsible for the twisting of the ring.

Thermal Isomerization of the Boat Conformers Ph₄P₂N₄-(SR)(SR'), (6-10B) into the Corresponding Chair Isomers. (6-10C). The boat conformers 6-10B can be converted into the corresponding chair conformers 6-10C by gentle heating at 35-40 °C for ca. 12 h in either acetonitrile or dichloromethane (see Scheme 1). The chair conformers exhibit a characteristic singlet in the ³¹P NMR spectrum at δ 27–29 (see Table 1). Thus the boat \rightarrow chair isomerization causes a deshielding of the heterocyclic ³¹P resonances by 11-12 ppm. The chair conformation of these complexes has been verified previously by the X-ray structural determination of the S, S'-diphenyl derivative Ph₄P₂N₄(SPh)₂ (δ ⁽³¹P) 29.3 ppm in CH₂Cl₂).⁵ The previous observation that the ³¹P NMR chemical shift of the initial products of the reactions of [Li(Ph₄P₂N₄S₂)THF]₂ or Li₂-[Ph₄P₂N₄S₂] with iodoalkanes differs from that of the final product by >10 ppm¹⁰ can now be explained by the boat \rightarrow chair isomerization process. Presumably, the chair form is the thermodynamically favored isomer. Conformational flexibility is a common feature of eight-membered cyclophosphazenes.^{1,19} The best known example is the existence in the solid state of both a metastable boat conformer and a centrosymmetric chair form of $N_4P_4Cl_8$ ²⁰ The uniqueness of the present example is the ability to monitor the isomerization process in solution by ³¹P NMR spectroscopy.

Synthesis and X-ray Structure of [Ph₄P₂N₄(Sallyl)₂] (11B). In order to gain further insight into the influence of exocyclic allyl groups on ring conformation, the derivative Ph₄P₂N₄- $(Sallyl)_2$ (11) was prepared in 56% yield by the addition of 2 molar equiv of allyl iodide to a slurry of Na₂[Ph₄P₂N₄S₂] in THF. The ¹H NMR spectrum of 11 in d_6 -benzene clearly shows that the two allyl groups are equivalent in solution. The ³¹P NMR resonance consists of a singlet at δ 15.0, suggesting a boat conformer with sulfur atoms in the prow and stern positions (vide supra). However, an X-ray structure determination of 11 showed this assumption to be incorrect. An ORTEP drawing of 11 with the atomic numbering scheme is illustrated in Figure 3, and selected structural parameters are summarized in Table 4. The $P_2N_4S_2$ ring in 11 does indeed adopt a boat structure, but in this particular case, antipodal nitrogens rather than sulfur atoms occupy the prow and stern positions. Once again, each sulfur atom appears to be involved in a long range interaction with the attached allyl group [d(S(1)-C(26) = 2.74(1) Å)] and d(S(2)-C(29) = 2.72(1) Å)]. We suggest that the ring assumes this unusual boat conformation in order to facilitate this intramolecular interaction. In distinct contrast to the behavior of the boat conformers 6-10B, the heterocycle 11 does not isomerize to the chair conformer upon heating. In fact, rapid decomposition occurs when a solution of 11 is heated above 40 °C.

Preparation and X-ray Structure of [Ph₄P₂N₃(NMe)(SPh)₂]-[CF₃SO₃] (12). In a previous investigation we showed that the interaction of the six-membered ring $Ph_4P_2N_3SPh$ with Lewis or Brønsted acids occurs in a regiospecific manner to give N-bonded adducts.²¹ Although the four nitrogen sites are equivalent in the closely related eight-membered ring $Ph_4P_2N_4$ -(SPh)₂, it was of interest to determine the effect of adduct formation on the structure of the $P_2N_4S_2$ ring particularly with a view to using Lewis acids to promote ring opening and, hence, polymerization. There has been considerable interest recently in polymers based on a PNPNSN backbone,⁸ but polymers with alternating PN and SN units are unknown.

The N-methylated adduct [Ph₄P₂N₃(NMe)(SPh)₂][CF₃SO₃] (12) was prepared by the addition of a slight excess of methyl triflate to a solution of $Ph_4P_2N_4(SPh)_2$ in dichloromethane. The ³¹P NMR spectrum of **12** showed the expected pair of mutually coupled doublets at δ 33.2 and 36.0 with ${}^{4}J({}^{31}P-{}^{31}P) = 3$ Hz. The N-CH₃ resonance in the ¹H NMR spectrum appeared as a doublet $[{}^{3}J({}^{31}P-{}^{1}H) = 8 Hz]$. An X-ray analysis of 12 was carried out in order to determine the structural perturbation caused by N-methylation of the P2N4S2 ring. An ORTEP drawing with the atomic numbering scheme for the cation is shown in Figure 4, and selected bond lengths and bond angles are summarized in Table 5. The overall chair conformation of the $P_2N_4S_2$ ring is retained with some distortion arising from the movement of the methylated nitrogen out of the plane formed by the phosphorus P(2) and three other nitrogen atoms by ca. 0.85 Å. Phosphorus atom P(1) is 1.14 Å out of a P(2)N-(2)N(3)N(4) plane on the same side as N(1). Adduct formation results in the elongation of the skeletal S-N(Me) and P-N(Me)bonds by 0.078 and 0.074 Å, respectively, and a small contraction (0.03-0.04 Å) of the adjacent P-N and S-N bonds. The other bond lengths and all the endocyclic bond angles in 12 are essentially unaffected by N-methylation. Lengthening of the skeletal bonds involved in coordination by ca. 0.07 Å was also observed for the six-membered ring Ph₄P₂N₃SPh upon N-methylation.²¹ Preliminary investigations of the thermally induced opening of $P_2N_4S_2$ rings indicated that the temperature necessary for decomposition is reduced from ca. 150 °C in $Ph_4P_2N_4(SPh)_2$ to <100 °C in the N-methylated adduct. However, the thermal decomposition of 12 in solution or in the solid state produced a black tar.

Conclusion. The reaction of $[\text{Li}(\text{Ph}_4\text{P}_2\text{N}_4\text{S}_2\text{R})\text{THF}]_2$ with organolithium reagents is a versatile synthetic route to either symmetrical ($\mathbf{R} = \mathbf{R}'$) or unsymmetrical *S*,*S'*-diorgano derivatives of the type Ph₄P₂N₄(SR)(SR'), which are isolated initially as lithium iodide adducts. The coordinated LiI is readily removed upon dissolution in CH₂Cl₂ or toluene to give boat conformers of the eight-membered ring. These boat conformers are readily converted into the corresponding chair conformers upon mild heating in solution with a concomitant deshielding of the ³¹P NMR resonance for the heterocyclic phosphorus atoms by 11–13 ppm. Although conformational isomers are prevalent in cyclophosphazene chemistry, particularly for eight-membered rings, the unique feature of the hybrid derivatives **6-10** is the ability to monitor the boat \rightarrow chair conformational change readily in solution by ³¹P NMR spectroscopy.

Acknowledgment. We thank the NSERC (Canada) for financial support.

Supplementary Material Available: Tables listing crystallographic parameters, thermal parameters for non-H atoms, positional and isotropic thermal parameters for H atoms, bond lengths and bond angles for all atoms, torsion angles, and least squares planes (51 pages). Ordering information is given on any current masthead page.

⁽¹⁹⁾ Krishnamurthy, S. S.; Sau, A. C.; Woods, M. Adv. Inorg. Chem. Radiochem. 1978, 21, 41.

^{(20) (}a) Hazekamp, R.; Migchelson, T.; Vos, A. Acta Crystallogr. 1962, 15, 539. (b) Wagner, A. J.; Vos, A. Acta Crystallogr., Sect. B 1968, 24, 1423.

⁽²¹⁾ Chivers, T.; Fait, J.; Liblong, S. W. Inorg. Chem. 1989, 28, 2803.